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Abstract. Magnetohydrodynamic (MHD) representations are used to model a wide range of
plasma physics applications and are characterized by a nonlinear system of partial differential equa-
tions that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting
linear systems that arise from discretization and linearization of the nonlinear problem are generally
difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We con-
sider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess–Sarazin
relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid visco-
resistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned
GMRES method employed within Newton’s method. To isolate the effects of the different relaxation
methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. We
present convergence and timing results for a two-dimensional, steady-state test problem.
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1. Introduction. Magnetohydrodynamics (MHD) models the flow of a charged
fluid in the presence of electromagnetic fields. There are myriad formulations of the
MHD model, depending on the domain and physical parameters in question. In this
paper, we treat the ions and the electrons together as a single fluid. The resulting
model couples the Navier–Stokes equations with Maxwell’s equations, forming a non-
linear system of partial differential equations (PDEs). Depending on assumptions
associated with the coupling between the electric field, current density, and Ohm’s
law, one can obtain a variety of different formulations such as ideal MHD, resistive
MHD, and Hall MHD [21]. In this paper, we consider an incompressible viscoresistive
formulation of the MHD system. Moreover, we focus on time-independent solutions,
as our primary concern is with the linear solvers.

In order to treat this nonlinear system of PDEs, we discretize the nonlinear equa-
tions and then linearize using automatic differentiation and Newton’s method [33]. In
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addition, we use a mixed finite-element discretization that results in a saddle-point
linear system. Systems of this type arise in a variety of applications, including fluid
dynamics [5]. There are two dominant families of solution algorithms for these types
of systems, namely, block preconditioning [16, 17, 26, 45, 47] and monolithic multi-
grid [6, 30, 46].

Block preconditioners manipulate a segregated Jacobian operator so that the
essential coupling in the problem is easily resolved using workhorse algorithms such as
algebraic multigrid methods [37] on simpler problems [45]. In this way, these methods
leverage the good parallel and mesh resolution scalability of existing preconditioner
technology. Block preconditioning techniques have also been applied to MHD models.
For the viscoresistive model of MHD, [15] uses an approximate block factorization
scheme that decomposes the MHD system into two systems, incompressible Navier–
Stokes and a velocity-magnetics coupling, and solves them independently, leveraging
well-known solvers for incompressible Navier–Stokes. Additionally, in [12, 13, 28, 34],
physics-based preconditioners are used to factor the matrix into systems that are
amenable to multigrid methods.

In contrast, we will consider the latter family of monolithic multigrid methods,
which have been used less commonly for MHD. In these approaches, relaxation tech-
niques are developed for and applied directly to the fully coupled system. This idea
is not new and dates back to the earliest treatments of multigrid for coupled sys-
tems [7, 8, 9]. For fluid dynamics, monolithic multigrid treatments of the Stokes
equations can be found in [6, 19, 32, 39]. These techniques have been applied to
the Navier–Stokes problem as well [27, 29, 46]. In the field of fluid-structure interac-
tion, [20] presents a monolithic AMG for that coupled system. For MHD, monolithic
nonlinear multigrid solvers have been used in the context of finite-difference discretiza-
tions [1]. Alternatively, first-order system least squares finite-element methods along
with nested iteration and AMG to solve the resulting linear systems have been used on
resistive MHD formulations [2, 3, 4]. Finally, in [41] a monolithic AMG preconditioner
is developed for an equal-order stabilized viscoresistive MHD formulation. However,
this methodology relies on the unknowns being collocated at the mesh nodes and thus
is not applicable for the mixed discretization considered here.

In this paper, we will consider a mixed finite-element discretization of a visco-
resistive formulation of the MHD model, described in section 2. To precondition the
resulting linear systems, we employ a geometric multigrid preconditioner, detailed in
section 3, in which we choose relaxation schemes that are extended from two well-
known fluid dynamics techniques, namely, Vanka relaxation [46] and Braess–Sarazin
relaxation [6]. Finally, we show in section 4 that these monolithic techniques lead to
effective preconditioners for this system.

2. Steady-state viscoresistive MHD. The MHD equations are a coupling of
the Navier–Stokes equations with Maxwell’s equations, where additional body forces
come from electromagnetic effects [3, 31]. We pursue the one-fluid viscoresistive MHD
system [21], where the dependent variables are the fluid velocity u, the hydrodynamic
pressure p, and the magnetic field B. The equations are

∂u

∂t
+ (u · ∇)u−∇ · (T+TM ) +∇p = 0,(2.1)

∂B

∂t
−∇× (u×B) +∇×

(
1

Rem
∇×B

)
= 0(2.2)

ρ∇ · u = 0,(2.3)

∇ ·B = 0,(2.4)
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where the Newtonian and magnetic stress tensors are

T =
1

Re

[∇u+∇uT
]

(2.5)

and

TM = B⊗B− 1

2
‖B‖2 I,(2.6)

respectively [22]. Additionally, we define the standard nondimensional Reynolds num-
ber, Re, and magnetic Reynolds number, Rem,

Re =
ρUL

ν
, Rem =

μ0UL

η
,(2.7)

for a characteristic velocity, U , and a characteristic length scale, L. The physical
parameters, all assumed constant, are the fluid viscosity ν, the fluid density ρ, the
magnetic permeability of free space μ0, and the magnetic resistivity η. A third non-
dimensional constant arises in the test problem below, the Hartmann number, defined
as

Ha =
√
ReRem =

BL√
ην
,(2.8)

for a characteristic magnetic field magnitude B. The Reynolds number relates the
fluid velocity to the fluid viscosity; the magnetic Reynolds number relates the fluid
velocity to the magnetic resistivity; and the square of the Hartmann number relates
the magnetic forces and the viscous forces [31]. In particular, higher values for the
Hartmann number are associated with a stronger electromagnetic influence upon the
flow, representing stronger coupling between the fluid and electromagnetic variables.

For this study, we focus on a two-dimensional geometry. We first note that we
can write B = ∇ ×A for a vector potential, A, since it must satisfy ∇ · B = 0 (as
such, (2.4) is automatically satisfied, and we no longer include it in the formulation).
Since we want B to have nonzero components only in the plane, we demand that A =
(0, 0, Az)

T . Using this simplification, (2.2) reduces to the following scalar equation:

∂Az

∂t
+ u · ∇Az − 1

Rem
∇ 2Az + E 0

z = 0,(2.9)

where E 0
z is the z-component of the electrostatic part, Estat, of the electric field, E,

that vanishes in the derivation of (2.2) because ∇× Estat = 0. The magnetic stress
tensor (2.6) can also be rewritten in terms of Az:

TM =

⎡
⎢⎢⎣

1
2

[(
∂Az

∂y

)2
− (∂Az

∂x

)2] −∂Az

∂y
∂Az

∂x

−∂Az

∂x
∂Az

∂y
1
2

[(
∂Az

∂x

)2 − (∂Az

∂y

)2]
⎤
⎥⎥⎦ ,(2.10)

where êx and êy are the unit vectors in the x- and y-directions, respectively. For this
paper, we consider this vector potential formulation, given by (2.1), (2.3), and (2.9),
with viscous and magnetic stress tensors defined by (2.5) and (2.10), respectively.
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2.1. Discretization and linearization. In this paper, we consider the time-
steady case of (2.1), (2.3), and (2.9), with (2.5) and (2.10), and henceforth drop the
time derivatives. To begin, note that the boundary conditions we consider are ho-
mogeneous Dirichlet for the fluid velocity, nonhomogenous Dirichlet for the magnetic
vector potential, and none for the fluid pressure. Thus, we define finite-dimensional
test spaces Vh ⊂ H1

0, V
h ⊂ H1

0 , and Q
h ⊂ L2

0. We write the discretized weak form
of these equations:∫

Ω

{[
(uh · ∇)uh

] · vh + (Th +Th
M ) : ∇vh +∇ph · vh

}
dx = 0 ∀vh ∈ Vh,(2.11) ∫

Ω

[(
uh · ∇Ah

z + E0
z

)
ψh +

1

Rem
∇Ah

z · ∇ψh

]
dx = 0 ∀ψh ∈ V h,(2.12) ∫

Ω

qh∇ · uh dx = 0 ∀qh ∈ Qh,(2.13)

where Th = T(uh) and Th
M = TM (Ah

z ).
The discrete variational form, (2.11)–(2.13), is nonlinear, and thus automatic

differentiation is used in the context of Newton’s method to linearize the system [33].
After this process, linear systems of the following block form are solved:

Ax =

⎡
⎣ F Z B
Y D 0
BT 0 0

⎤
⎦
⎡
⎣xuxa
xp

⎤
⎦ =

⎡
⎣fufa
fp

⎤
⎦ ,(2.14)

where xu, xa, and xp are the discrete Newton corrections for u, Az, and p, respectively,
and fu, fa, and fp are the corresponding blocks of the nonlinear residual.

As with the Navier–Stokes equations, well-posedness of the discrete system re-
quires that the discretization of the velocity and pressure unknowns satisfy an “inf-
sup” condition. In this case, the fluid velocity and pressure variables, xu and xp,
are discretized using Taylor–Hood (Q2 − Q1) elements that are well known to be
stable [10, 18]. The basis functions associated with these elements are biquadratic
for each component of the velocity field (Vh = Q2) and bilinear for the pressure
(Qh = Q1). For the vector potential variable, xa, a discretization using (scalar) Q2

elements is used as the test space, V h. This affords the advantage that the degrees of
freedom will be collocated with the velocity field degrees of freedom.

While similar discretizations have been considered in the literature before [15,
35, 41], we note that proofs of inf-sup stability for (2.11)–(2.13) remain open, both
in the continuum and at the discrete level. For the variational formulation of the
full B-field stationary, incompressible MHD system, it is known that augmenting an
inf-sup stable finite-element pair for the velocity-pressure degrees of freedom with an
appropriate finite-element space for the magnetic degrees of freedom yields a system
that is stable overall [23, 40], under suitable small-data or low-Reynolds number
assumptions. Following these approaches would likely yield a similar result for this
formulation, and we will consider this in future work.

3. Monolithic multigrid. System (2.14) is of saddle-point type [5]. Such sys-
tems arise in a variety of applications, including fluid dynamics. This paper develops
a monolithic multigrid preconditioner for this system using geometric coarsening. The
focus of this section, and this paper, is the development of effective relaxation schemes.

Geometric multigrid methods effectively use complementary processes of relax-
ation and coarse-grid correction to effectively damp all components of the error in a



MONOLITHIC MULTIGRID METHODS FOR 2D RESISTIVE MHD B5

linear system [11, 44]. In particular, a relaxation technique is employed to quickly
damp the oscillatory components of the error. Subsequently, a coarse-grid correction
scheme, in which a projected problem is solved on a coarser grid and the solution is
interpolated as an error correction on the fine grid, is used to damp the smooth com-
ponents of the error. This process may be applied recursively to multigrid hierarchies
consisting of several levels to achieve an optimal algorithm for solving a linear system.

Here, we investigate the choice of the relaxation scheme, leaving the rest of the
multigrid method fixed. We use geometric interpolation and restriction operators
on regular grids with coarsening by a factor of two in each direction. These grid
transfer operators are applied componentwise (that is, the velocity space is coarsened
independently of the pressure space, etc.). In particular, we define the interpolation
operators to be the blocked versions of the standard Q2 − Q2 − Q1 finite-element
interpolation operators. That is,

P =

⎡
⎣Pu

Pa

Pp

⎤
⎦ ,

where Pu is a vector-biquadratic interpolation operator (Q2), Pa is a scalar-biquadratic
interpolation operator (Q2), and Pp is a bilinear interpolation operator (Q1). Fur-
thermore, we use the Galerkin coarse grid operator Ac = PTAP . Finally, we use one
prerelaxation step (i.e., before restricting to the coarse grid) and one postrelaxation
step (i.e., after interpolating the correction to the fine grid). With these components
fixed, we extend and compare two relaxation techniques from the fluid dynamics
literature. We discuss the extension of the Vanka scheme [46] to system (2.14) in
section 3.1, and then we describe the extension of the Braess–Sarazin scheme [6] in
section 3.2.

Remark 1. We use the term “monolithic” multigrid here to describe a multigrid
method in which all components of the solution (here, u, Az , and p) are simultaneously
transferred between grids using a block-structured interpolation operator, such as the
one above. This is in contrast to “block-preconditioning” approaches, where simpler
multigrid cycles may be used for some or all components of the solution, but coupling
between components only occurs on the scale of the original discretization.

3.1. Vanka relaxation. Vanka relaxation was originally developed for use with
multigrid solvers for the Navier–Stokes equations in primitive variables. A general
description of the Vanka scheme for incompressible fluids can be found in [27, 29, 46].
The method describes an overlapping block-Gauss–Seidel iteration [38] (or an over-
lapping multiplicative Schwarz method) in which the choice of blocks (subdomains)
is motivated by the underlying saddle-point problem, in such a way as to ensure that
the submatrices are also saddle-point matrices. The original algorithm was discussed
in the context of a staggered-mesh (marker and cell, MAC) finite-difference scheme,
which was analyzed using local mode analysis in [42]. Vanka methods for finite-
element discretizations of the Stokes equations have been analyzed in that setting
in [30]. Here, we extend the Vanka scheme to the finite-element discretization of this
MHD formulation.

Define the sets of degrees of freedom (DOFs) to be Su = {u1, . . . , unu}, Sa =
{a1, . . . , ana}, and Sp = {p1, . . . , pnp}, where nu, na, and np are the numbers of u,
Az , and p DOFs, respectively, in the system. Let S = Su ∪ Sa ∪ Sp be the set of all
DOFs in the system. The N Vanka blocks, S� ⊂ S, � = 1, . . . , N , are chosen such that
each block contains some elements of Su, some elements of Sa, and some elements of
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Sp. Moreover, the Vanka scheme is an overlapping block-Gauss–Seidel method, and
thus DOFs are allowed to appear in multiple blocks as long as ∪�S� = S (i.e., each
DOF appears in at least one block).

Remark 2. Note that the members of Su, Sa, and Sp are not the values in
the vectors xu, xa, and xp, though there is an obvious connection between the two.
Specifically, the value corresponding to the DOF ui is the ith entry in the vector xu.
A similar relation holds for Sa and xa, as well as Sp and xp.

In fluid-dynamics applications, the standard approach to decomposing S into
the subsets, S�, is to “seed” the choice of the Vanka blocks by the incompressibility
constraint, or (equivalently) by the pressure degrees of freedom. Algebraically, this
means considering each row, �, of the matrix BT in (2.14), and defining S� to be the
DOFs with nonzero entries in that row, as well as the DOF, p� ∈ Sp, to which that
row corresponds. Geometrically, this is the same as considering pressure node � and
defining S� to be all of the DOFs contained in the stencil surrounding it, with the
exception of the other pressure DOFs (so that only a single pressure DOF appears in
each Vanka block). Thus, the incompressibility constraint is enforced for the DOFs
in the Vanka block at each step of the Gauss–Seidel iteration.

Since, in the block form given in (2.14), there is no coupling between the magnet-
ics DOFs and the incompressibility constraint (i.e., there are no length-one algebraic
graph connections from nodes associated with DOFs from the matrix BT to those
associated with the matrix Z), proceeding in this way does not give a proper decom-
position of S, since no decomposition of Sa is done. Since we are working with a
Q2 − Q2 − Q1 finite-element method, however, we have vector potential DOFs xa
that are collocated with the velocity DOFs (xu). Thus, we extend the classical def-
inition of the Vanka blocks by augmenting them with the magnetics DOFs that are
collocated with the velocity DOFs that are associated with the local incompressibil-
ity constraint equation particular to that block. This is the only dependence on the
discretization in this method, and it could easily be generalized to other discretiza-
tions. Alternatively, if one considers the complete symbolic finite-element stencil (i.e.,
including entries that numerically but not symbolically evaluate to zero), a Vanka
block S� may be thought of as those DOFs present in a stencil centered on pressure
node �, except for the other pressure DOFs. For the Q2 −Q2 −Q1 discretization in
two dimensions, the Vanka blocks will have a maximal size of 76 DOFs per block (25
each for the x- and y-components of velocity, 25 for the vector potential, and 1 for
the pressure).

The Vanka blocks are collections of DOFs that we use to define the remainder of
the method. For each Vanka block S�, the Vanka step computes updates to the global
solution x as

x← x+ V�
(
ωM−1

��

)
V T
� (b−Ax) .(3.1)

Here, V T
� is a “restriction operator” that restricts global vectors to local vectors,

containing only entries corresponding to the DOFs in Vanka block S�. Likewise,
V� is the corresponding “prolongation operator” that returns local vectors to global
vectors [38]. We also require the use of an underrelaxation parameter here, termed
ω. Finally, M�� = V T

� MV�, where M is some appropriate preconditioner for A. Note
that M�� will maintain the saddle-point structure of A. In our case, it is the choice
of M that differentiates different Vanka methods.

Remark 3. For our purposes, we consider ω in (3.1) to be a scalar. It is possible,
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however, to consider a diagonal matrix scaling instead, with

ω =

⎡
⎣ωuIu

ωaIa
ωpIp

⎤
⎦ ,

where Iu, Ia, and Ip are identity matrices of appropriate size for the velocity, mag-
netics, and pressure DOFs in each Vanka block. As we show in section 4.2, scaling
each component independently was not necessary to achieve good performance in the
case of the test problem that we consider.

Next, we define three different Vanka methods: “Full” Vanka, “Diagonal” Vanka,
and “Economy” Vanka. These correspond to three choices of M . To assist in describ-
ing these methods, we make the following definitions, relative to the system (2.14):

F̂ =

[
F Z
Y D

]
, B̂ =

[
B
0

]
, xû =

[
xu
xa

]
, fû =

[
fu
fa

]
.(3.2)

Then system (2.14) is rewritten

Ax =

[
F̂ B̂

B̂T 0

] [
xû
xp

]
=

[
fû
fp

]
.(3.3)

Thus, (2.14) is in exactly the same block form as the linear systems associated with
the incompressible Stokes or Navier–Stokes equations [6, 27, 29, 46].

The Full Vanka method is defined by taking Mfull = A:

Mfull =

[
F̂ B̂

B̂T 0

]
.(3.4)

In this case, the Vanka submatrix M�� is effectively dense. Even though these subma-
trices are not large (maximally 76× 76 in the case of a Q2 −Q2−Q1 discretization),
solving systems with them is computationally expensive, especially as the number of
Vanka blocks grows large. To ameliorate this computational burden, we consider al-
ternative choices for M that result in submatrices that can be more cheaply inverted
at each step.

First, we define the Diagonal Vanka method [27, 29], which was also originally
used for incompressible Navier–Stokes. We extend it here to MHD simply by using

M =Mdiag =

[
diag(F̂ ) B̂

B̂T 0

]
,(3.5)

where

diag(F̂ ) =

[
diag(F )

diag(D)

]
.

The fluid-pressure coupling is exactly the same as the Diagonal Vanka method for
Navier–Stokes, and we have added a diagonal component of the magnetics variables
as well. The choice of M = Mdiag results in Vanka submatrices, M�� that are much
less dense than those resulting from the choice M = Mfull. Moreover, solving the
resulting linear systems requires only three vector operations (and no explicit matrix
inversion or matrix-vector products) on vectors of size one less than the dimension
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of M��: a componentwise product (for the inversion of the diagonal block), a scalar
multiplication, and a dot product.

We will see in section 4.3.1 that solving systems with Mdiag is substantially
cheaper and faster per iteration than with Mfull, but the resulting preconditioner
deteriorates as the fluid velocity and magnetics coupling, represented by Y and Z,
grow stronger. This is because this approach essentially decouples the magnetics from
the velocity-pressure unknowns when updating the �th block. This can be seen by
considering the following block factorization of (3.5):[

diag(F̂ ) B̂

B̂T 0

]
=

[
diag(F̂ ) 0

B̂T Ŝ

] [
I diag(F̂ )−1B̂
0 I

]
,(3.6)

where Ŝ = −B̂T diag(F̂ )−1B̂. Expanding this expression, we have

Ŝ = − [BT 0
] [diag(F )−1 0

0 diag(D)−1

] [
B
0

]
= −BT diag(F )−1B.(3.7)

That is, a solve with (3.6) will decouple the magnetics from the velocity-pressure
update on block �, since solves with Ŝ will only receive contributions from F , the
matrix representing velocity-velocity coupling on Vanka block �.

As an alternative that preserves some physics coupling and reduces the density
of the submatrices, we propose an Economy Vanka method. For this approach, we
define

M =Mecon =

[
blkDiag(F̂ ) B̂

B̂T 0

]
,(3.8)

where blkDiag(F̂ ) is a special block-diagonal submatrix of F̂ . To form blkDiag(F̂ ) in
the case of the Q2 −Q2 −Q1 discretization, we remove the off-node connections in a
given row of F̂ , or, equivalently, we keep only the entries in a row corresponding to
velocity and magnetics DOFs collocated with the DOF corresponding to the diagonal
entry of that row. In this case, the resultant matrix, blkDiag(F̂ ), will have three
entries remaining in each row: one x-component of velocity, one y-component of
velocity, and one vector potential. The Vanka submatrices arising from the choice
of M = Mecon will inherit this increased sparsity while still preserving some of the
velocity-magnetics coupling. Thus, these submatrices are cheaper to apply than those
of the Full approach. By precomputing the (dense) LU-factors of the submatrices
corresponding to these diagonal blocks, we can cheaply apply the inverses of the
Economy Vanka submatrices by a series of solves with these factors, plus one scalar
multiplication and a dot product, both with vectors of size one less than the dimension
of M��.

3.2. Braess–Sarazin relaxation. Braess–Sarazin-type algorithms were origi-
nally developed as a relaxation scheme for the Stokes equations [6, 29]. They have
also been studied in the context of the incompressible Navier–Stokes equations [27].
Whereas the Vanka methods require solving several small, local saddle-point systems
in a block Gauss–Seidel fashion, the Braess–Sarazin methods require solving a greatly
simplified but global saddle-point system.

Using (3.3), we proceed directly as in the original algorithm. We must solve
systems of the form[

αC B̂

B̂T 0

] [
x
y

]
=

[
αC 0

B̂T S

] [
I 1

αC
−1B̂

0 I

] [
x
y

]
=

[
d
g

]
,(3.9)
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where C is some appropriate preconditioner for F̂ , the inverse of which is easy to apply;
α is a chosen relaxation parameter; and S = − 1

α B̂
TC−1B̂ is the Schur complement.

Solutions of (3.9) are computed by

Sy = g − 1

α
B̂TC−1d,(3.10)

x =
1

α
C−1(d− B̂y).(3.11)

In practice, (3.10) is not solved exactly; an approximate solve is sufficient. For this
study, we explicitly form the matrix S for a given choice of C, and we consider
approximately solving (3.10) using a single sweep of either symmetric (point) Gauss–
Seidel (SGS) or weighted (point) Jacobi. SGS does not require another parameter to
be chosen, and we will see that it tends to be more effective in terms of linear iteration
counts. Jacobi requires another parameter choice but is a perfectly parallelizable
method. Solves with more sweeps were also considered, but we observed only slight
improvement in the average linear iteration count and almost no improvement in total
time to solution when using multiple sweeps of SGS.

The ideal Braess–Sarazin update then takes the form[
xû
xp

](k+1)

=

[
xû
xp

](k)
+

[
αC B̂

B̂T 0

]−1
([

fû
fp

]
−
[
F̂ B̂

B̂T 0

] [
xû
xp

](k))
,

where F̂ , B̂, xû, and fû are as in (3.2), and C is some appropriate preconditioner
for F̂ . The linear system is approximately solved using (3.10)–(3.11) using SGS or
weighted Jacobi to approximately solve the Schur complement system, as described
above.

We note that (3.9) could also be seen as the starting point for the well-known
family of block-factorization preconditioners [5, 16, 18]; because we use it only to
define the smoother on each level of the multigrid hierarchy, we are able to choose
C to be based on very simple approximations to F̂ and still have a very effective
preconditioner. For this study, we consider two possible choices for C. The first
possibility is simply

Cdiag = diag(F̂ ) =

[
diag(F )

diag(D)

]
.

This choice, referred to hereafter as Diagonal Braess–Sarazin, affords the advantage
that C−1

diag is nearly trivial to compute and apply.
Applying the same reasoning as in section 3.1 with (3.6)–(3.7), we see that Diago-

nal Braess–Sarazin results in a Schur complement of the form S = −BT diag(F )−1B.
In this case, Diagonal Braess–Sarazin essentially decouples as the original Braess–
Sarazin on the fluid system (velocity and pressure) and weighted Jacobi on the mag-
netics degrees of freedom—there is no coupling of the magnetics with the fluids. We
expect, then, that this decoupling leads to the diminishing performance of the solver
that is observed in section 4.2 when the strength of the coupling between the fluid
velocity and magnetic potential is increased.

Thus, in order to achieve a more robust method, we consider the same block-
diagonal approximation to F̂ that we considered when formingMecon, (3.8), for Econ-
omy Vanka above. That is, we use Cblkdiag = blkDiag(F̂ ). This choice, referred to
hereafter as Block–Diagonal Braess–Sarazin, results in a C−1

blkdiag that has only 3 en-
tries per row and is thus also easy to apply. Moreover, it recognizes the coupling
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between the magnetic effects and the fluid effects. We see that preserving this cou-
pling numerically in the relaxation scheme is important for achieving convergence in
physical regimes in which the magnetic forces couple strongly to those of the fluid.

4. Numerical experiments. For numerical experiments, we study a modified
Hartmann flow vector potential system [31, 41]. This is an appealing test problem for
this study because there is a known analytical solution against which we will verify
the numerical results. We fix the stopping criterion for the nonlinear iteration to
be that the norm of the nonlinear residual has been reduced below 10−8. A relative
residual reduction of 10−5 is the linear solver stopping criteria. Within the multigrid
method, the number of levels is chosen so that the coarsest grid corresponds to an 8×8
mesh (3556 DOFs). Finally, we use geometric interpolation operators and Galerkin
coarse-grid operators, as described above, as well as one prerelaxation step and one
postrelaxation step (a V(1,1) cycle). The only component to the solver that varies is
the choice of the relaxation technique: Full Vanka, Economy Vanka, Diagonal Vanka,
Block-Diagonal Braess–Sarazin, and Diagonal Braess–Sarazin.

We have implemented these solvers using the Trilinos framework [24] within the
Drekar multiphysics application [43]. Drekar manages the simulation interface—the
nonlinear iterations, the discretization, and the linear solver. Multigrid precondi-
tioners are implemented within the MueLu package [36], and the Teko package [14],
designed for block preconditioning, is used for the Braess–Sarazin methods. Finally,
the Vanka methods are implemented within the Ifpack2 package [24], as an interface
for block Gauss–Seidel methods, which already existed there—requiring only that the
blocks and the Vanka submatrix form be specified. All tests are performed in serial
and run on a machine with 2 Intel Xeon E5-2650 v2 CPUs at 2.60 GHz configured
with 128GB DDR3 RAM clocked at 1866MHz.

4.1. Test problem and numerical verification. The modified Hartmann flow
problem is a steady-state problem that we consider in two dimensions, posed over a
square domain Ω = [−L,L]2. This models a section of a duct or channel through
which a fluid is flowing and is subjected to a transverse magnetic field B0 = (0, B0, 0),
applied perpendicularly to the direction of the flow. In this test problem, the fluid
flow is driven in the x-direction by an applied pressure gradient ∂p

∂x = −G0, and
thus the magnetic field B0 is nonzero only in the y-direction. Also, we assume that
the channel has insulating walls. Thus, as stated above, we have Dirichlet boundary
conditions for the fluid velocity and the magnetic vector potential on all four walls.

This configuration results in velocity having only a single nonzero component, ux,
and the magnetic field having two, Bx and By. It can be shown that By = B0 [31], the
applied magnetic field. The analytical solution to this problem is then u = (ux, 0, 0)
and B = (Bx, B0, 0), where

ux =
ηρG0Ha

B2
0

(
cosh(Ha)− cosh(yHa/L)

sinh(Ha)

)
,(4.1)

Bx =
B0Rem
Ha

(
sinh(yHa/L)− y sinh(Ha)/L

cosh(Ha)

)
.(4.2)

From this expression, and recalling that B = ∇×A, we have that Az must be

Az = −B0x+
μ0ρG0L

2

B0

(
cosh(yHa/L)

sinh(Ha)Ha
− y2

2L2

)
.(4.3)
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Due to the insulating walls of the channel, the electrostatic field component is constant
and is given by

E0
z =

ηρG0

B0

(
1− Ha

tanh(Ha)

)
.

Recall the definitions of the Reynolds number, Re, the magnetic Reynolds number,
Rem, and the Hartmann number, Ha, given in (2.7) and (2.8). In the case of the
Hartmann problem, we have U proportional to the maximum x-direction velocity:

U =
ηρG0

B2
0

Ha

tanh(Ha)
.

For the Hartmann number, the characteristic magnetic field magnitude is B = B0.
For the numerical experiments, we took L = 1, giving the computational domain
Ω = [−1, 1]2. Furthermore, we took ρ = ν = η = μ0 = 1, and G0 = 50. We selected
different values for B0 to produce the desired Hartmann numbers.

In Figure 1, we show a numerical verification study. We observe that, for a
representative sample of the solvers, we are in excellent agreement with the analyt-
ical solution. The linear solver used to generate the numerical results for Figure 1
was multigrid-preconditioned GMRES with Block-Diagonal Braess–Sarazin relaxation
with α = 1.0 using SGS for the approximate Schur complement solve on a problem
for which the size of the fine grid was 512× 512. It should be noted that the results
were indistinguishable for the other solvers with their optimal parameters. Table 1
shows the number of rows and the number of nonzero entries in the fine-grid matrix
for a number of grid sizes, as well the number of Newton steps and total GMRES
iterations required to resolve the simulation. We also show the discrete L2-norm of
the error in the ux and the Az components of the final solution. We have spatial
convergence of the nonlinear problem in the L2-norm in O(h4). Note that this is
for the full solution. For quadratic elements applied to the linearizations, we expect
O(h3) convergence rates for the update in Newton’s method and hence get one more
order for the full solution. Furthermore, with Ha = 20, the number of Newton steps
and GMRES iterations remains effectively constant as the resolution is increased. At
Ha = 80 on a grid with 128× 128 elements, the linear solver requires more iterations
to resolve the solution, but the nonlinear solver is unaffected. At higher resolution,
however, this is not an issue and the iteration counts appear closer to those in the
Ha = 20 case, where the influence of the magnetic field is less strong.

4.2. Parameter studies. Each of the relaxation techniques described in sec-
tion 3 has at least one parameter that must be chosen: ω for Vanka and α for Braess–
Sarazin. With the Braess–Sarazin method, we consider different techniques for solving
(3.11), namely, classical weighted Jacobi and SGS iterations. The former yields the
advantage that it is perfectly parallelizable, but requires choosing an underrelaxation
parameter ωJ to get convergence. The latter gives slightly better serial convergence
(by about two iterations per Newton step on average) and requires no additional
parameters.

4.2.1. Vanka. First, we consider Vanka relaxation. We investigate two physical
regimes: one with Hartmann number Ha = 20 and the other with Ha = 80. We
vary the Vanka parameter ω from 0.1 to 1.0 in steps of 0.1. Figure 2 shows the
average number of linear iterations per Newton step required to reduce the relative
linear residual below 10−5. The absence of a data point implies that the linear solver
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Fig. 1. Numerical verification of the Block-Diagonal Braess–Sarazin solver for the Hartmann
test problem. On the top, the true versus the computed velocity (ux) solutions; on the bottom,
the true versus the computed vector potential (Az) solutions. The solid lines show the analytical
solution, and the × and +× symbols indicate the numerical solution sampled every 12 elements along
the line x = 0. Recall that the solutions for ux should be independent of x, and the solutions for Az

should only vary linearly with x.
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Table 1

Data for typical simulations using the Braess–Sarazin method with α = 1.0 and SGS as the
approximate Schur complement solver. “N” is the row dimension of the system matrix. “nnz” is
the number of nonzeros in the matrix, including zeros that arise numerically but not symbolically in
the finite-element discretization. “Newton” gives the number of Newton steps to reach an absolute
nonlinear residual tolerance of 10−8. “GMRES” indicates the total number of GMRES iterations
required throughout the simulation. ‖eux‖2 and ‖ea‖2 are the discrete L2-norms of the error in the
ux and Az components of the numerical solution, respectively.

Grid N nnz Newton GMRES ‖eux‖2 ‖ea‖2

Ha = 20

1282 214,778 12,069,136 5 53 3.36e-06 2.48e-06

2562 855,556 48,222,736 5 52 2.10e-07 1.57e-07

5122 3,415,044 192,783,376 5 52 1.31e-08 9.85e-09

10242 13,645,828 770,918,416 5 52 8.19e-10 6.16e-10

Ha = 80

1282 214,778 12,069,136 5 80 1.19e-04 1.35e-04

2562 855,556 48,222,736 5 59 7.32e-06 1.02e-05

5122 3,415,044 192,783,376 4 43 4.53e-07 6.71e-07

10242 13,645,828 770,918,416 4 41 2.82e-08 4.20e-08

failed to converge to the desired tolerance within fifty iterations for at least one of the
Newton steps.

The optimal choice for Full Vanka is ω = 0.6, and with this choice of ω, the
linear systems converge in an average of six iterations for the Ha = 20 problem. This
convergence is independent of the fine-grid size. For the Ha = 80 problem, we see
convergence in about seven iterations—slightly less for the 512 × 512 problem and
slightly more for the 128 × 128 problem. Overall, the optimal parameter choice for
the method is quite insensitive to the grid size and Hartmann number.

For Diagonal Vanka, the optimal parameter has now shifted to ω = 0.5 for both
Hartmann numbers. For the Ha = 20 test problem, this method required an average
of 10–11 GMRES iterations per linear solve. For Ha = 80, however, the performance
of the Diagonal Vanka method is not robust to large Hartmann numbers. The optimal
parameter shifts to ω = 0.3 and the average number of GMRES iterations per linear
solve has increased to 20–22, now requiring twice as many as for the smaller Hartmann
numbers. This is not surprising—as we increase the Hartmann number, the magnetic
coupling to the fluid flow becomes stronger. This coupling is largely ignored by
relaxation when we take the diagonal of Â�� = [ FZ

YD ]
��
. That is, the contributions of

Z�� and Y�� are ignored by relaxation.
As the proposed compromise between the robustness of Full Vanka and the sim-

plicity of Diagonal Vanka, the results for Economy Vanka are shown in the center row
of Figure 2. For the low Hartmann number, Ha = 20, this method performs similarly
to the Diagonal Vanka method, having an optimal parameter of ω = 0.5 and requiring
an average of 10–11 GMRES iterations per linear solve. However, for the Ha = 80
test problem, it remains robust, requiring 11–13 GMRES iterations with an optimal
parameter of ω = 0.5. Thus, Economy Vanka takes a few more iterations than Full
Vanka, but it is also very robust across Hartmann parameter values, unlike Diagonal
Vanka.

As a final observation of this parameter study, we note that the Full Vanka method
offers more parameter choice flexibility in that it gives similar convergence results for
ω values between 0.5 and 0.7. However, with both the Economy and Diagonal Vanka
methods, we see that varying the relaxation parameter by 0.1 in either direction from
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Fig. 2. The average number of GMRES iterations using the Vanka method required to solve
the linear systems to a relative tolerance of 10−5 over all Newton steps for various choices of ω with
the listed fine-grid size. The top row shows Full Vanka; the middle row shows Economy Vanka; and
the bottom row shows Diagonal Vanka. The left column shows Ha = 20, and the right column shows
Ha = 80.

the optimal ω = 0.5 incurs a substantial cost of 3–6 GMRES iterations per linear
solve for most problems (for Ha = 80, it appears that choosing ω = 0.4 for Economy
Vanka is nearly as effective as ω = 0.5).

4.2.2. Braess–Sarazin. Next, we examine Braess–Sarazin as the relaxation
scheme and vary the Hartmann number as Ha = 1, Ha = 20, and Ha = 80. We
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Fig. 3. The average number of GMRES iterations using the Braess–Sarazin method required to
solve the linear systems to a relative tolerance of 10−5 over all Newton steps for various choices of
α. The top row shows Ha = 1; the middle row shows Ha = 20; and the bottom row shows Ha = 80.
On the left, we use one sweep of SGS to solve the approximate Schur complement system (3.10); on
the right, we use one sweep of weighted Jacobi with ωJ = 0.8.

vary the Braess–Sarazin parameter α from 0.7 to 2.5 in steps of 0.1. In Figure 3,
the average number of linear iterations required to reduce the relative linear residual
below 10−5 is shown. The absence of a data point implies that the linear solver failed
to converge to the desired tolerance within the allotted fifty iterations for at least one
of the Newton steps. On the left of Figure 3, we use a single sweep of SGS to relax on
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the Schur complement solve (3.10). On the right, we use a single Jacobi iteration to
solve (3.10) with ωJ = 0.8. Over all ωJ between 0.1 and 1.0 in steps of 0.1, choosing
ωJ = 0.7 or ωJ = 0.8 offered the best convergence; for uniformity, we show ωJ = 0.8
results throughout this section.

For Ha = 1, the optimal parameter choice is clearly α = 1.0. Moreover, for
α = 1.0, Diagonal and Block-Diagonal Braess–Sarazin are identical in the average
number of iterations per Newton solve. Notice that there is some flexibility in the
parameter choice. Choosing an α near 1.0 still offers speedy convergence—only when
α > 1.9 does the convergence suffer more rapidly. This trend is more noticeable with
the methods that use SGS to solve (3.10), but is also true for the Jacobi case.

For Ha = 20, again, the optimal parameter choice is α = 1.0. Here we see that the
block-diagonal method is more effective than the diagonal method, requiring about
two fewer iterations per Newton solve. The trend from the Ha = 1 results holds and
choosing α near 1.0 reliably ensures good convergence. Again, this is clearer for the
SGS methods than the Jacobi methods.

Analogously to the case of Diagonal Vanka, in the Ha = 80, the breakdown of
the Diagonal Braess–Sarazin method is seen. The method is unable to converge at all
for the 128 × 128 fine-grid test problem, and it requires inconsistent choices of α to
converge on the larger grids. Again, taking the diagonal of F̂ ignores the contributions
from Y and Z, the fluid velocity to magnetics coupling. As the Hartmann number
increases, this coupling becomes more pronounced, and this preconditioner is unable
to meaningfully capture that important coupling. Hence, from these results, the utility
of the block-diagonal method is clear. The optimal parameter for that method is still
α = 1.0, and at the higher grid sizes, the average number of iterations per Newton
step has not increased relative to the Ha = 1 and Ha = 20 scenarios.

4.2.3. Toward nonuniform meshes. The parameter studies above have been
run on uniform meshes. The velocity solution, u, to the Hartmann problem, however,
develops a sharp boundary layer asHa grows larger, as shown in Figure 1. In this case,
we could consider a boundary layer–type mesh, in which more elements are located
in the regions close to y = ±1, where u changes rapidly. To do this, we maintain
the tensor-product structure of the grids and shift the points in the y-direction such
that half of them are evenly spaced in [−1,−τ ] ∪ [τ, 1] and the other half are evenly
spaced in [−τ, τ ]. The points in the x-direction remain evenly spaced in [−1, 1].
We then vary the value of τ , effectively shifting the aspect ratios of the cells in the
mesh. Here, we note that the aspect ratio of the elements in the boundary layer
is 1

2τ .
Figure 4 shows the average number of linear iterations required as the aspect ra-

tio of the boundary elements grows (i.e., the spacing in the y-direction grows smaller
relative to the spacing in the x-direction), using the optimal parameter choices from
sections 4.2.1 and 4.2.2. We see that as the aspect ratio increases, the precondi-
tioner using Full Vanka relaxation maintains stable average iteration counts. How-
ever, the performance of the preconditioners using the Block-Diagonal Braess–Sarazin
and Economy Vanka schemes diminishes significantly as the aspect ratio increases. In
the results below, we return to cells with aspect ratio of unity, noting that the con-
clusions in this case may not apply to nonuniform meshes, particularly in the case of
anisotropic elements.

4.3. Performance analysis. With the algorithms validated against the analyt-
ical solution and the optimal parameters found, we now investigate the serial perfor-
mance of these methods. First, we isolate the performance of the relaxation schemes
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Fig. 4. The average number of linear iterations required to solve the Hartmann problem with
Ha = 20 on a boundary-layer mesh with 256× 256 elements.

independent of the multigrid method and the nonlinear iteration. Then we compare
performance for a set of full simulations.

4.3.1. Aggregate timing breakdown. The first set of timing results investi-
gates the performance of these relaxation techniques by themselves. To gather these
results, we ran 50 iterations of GMRES on the finest grid on the “zeroth” Newton
step using a “one-level multigrid” preconditioner. This forces only one sweep of relax-
ation per iteration of GMRES. There is only one setup phase per experiment. While
we only consider the zeroth Newton step for these tests, similar results are found for
other iterations.

Table 2 shows the results for the Vanka methods that we consider. In the setup
phase, Economy and Diagonal Vanka are much cheaper than Full Vanka—by nearly
a factor of four for Economy Vanka and just slightly more for Diagonal Vanka. This
is true both for the extraction of the Vanka matrices and for their factorization. Full
Vanka extracts and factors a 76 × 76 dense matrix for each block. Economy Vanka
extracts 75 rows of 4 entries and one row of 75 entries and factors the 3× 3 diagonal
blocks as they are extracted. Diagonal Vanka only extracts a diagonal of length 75
and one column and one row of length 75. In all cases, we see that the setup time
increases by a factor of 4 upon doubling the number of elements in each direction.

Finally, the solve phase results are also shown aggregated over 50 iterations of the
scheme. We note first that the total times for the different methods are very different.
At all grid sizes, Full Vanka takes more time than Economy Vanka, which takes more
time than Diagonal Vanka. However, they are all of the same order of magnitude
and within 10% of each other at each grid size. This is because the vast majority
of the time is spent updating residuals. The issue is common to overlapping block
Gauss–Seidel-type methods. Specifically, the residual must be updated after each
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Table 2

Aggregated timings in seconds for 50 iterations of the three Vanka relaxation schemes. There is
only one call to the setup phase, followed by 50 calls to the solve phase. “Extract” and “Factor” are
the extraction and factorization of the Vanka matrices, and the following “Total” is the total time
to set up the method, including some additional software overhead. For the solve phase, “Resid”
indicates the time spent updating the residual, “Block−1” indicates the amount of time spent applying
the block inverses (recall that the blocks are factored in setup), and the following “Prec*x” indicates
the total time spent applying the preconditioner, including some additional overhead.

128 × 128 256× 256 512 × 512

Full Econ Diag Full Econ Diag Full Econ Diag

Setup

Extract 4.756 1.142 1.031 19.32 4.489 3.941 76.51 18.382 14.337

Factor 0.793 0.188 0.123 3.212 0.632 0.489 12.63 3.008 1.933

Total 6.103 1.843 1.335 24.83 7.189 5.174 98.1 30.21 19.14

Solve

Resid 112.3 110.2 112.3 470.2 483.2 465.8 1848 1821 1828

Block−1 8.282 3.845 1.119 40.33 16.73 4.503 162.2 67.71 17.73

Prec*x 124.7 118 117.4 528 517 486 2078 1958 1904

block’s update has been computed. We implement this as efficiently as possible—
only updating those entries in the residual that change. However, it is still required
to do as many residual updates as there are pressure DOFs (i.e., one per Vanka block).
This is a significant cost, which scales by a factor of 4 as the number of elements in
each direction doubles.

If we isolate the time it takes to apply the inverses of the Vanka matrices, we
can see the computational advantages offered by Economy and Diagonal Vanka over
Full Vanka. Specifically, the inverses for Full Vanka take about 2.4 times as long to
apply as those for Economy Vanka for the larger grid sizes. Moreover, the inverses
for Economy Vanka take about 3.7 or 3.8 times as long to apply as those for Diagonal
Vanka on the larger grid sizes. Nevertheless, even if we were to suppose that the
residual computations were done for free, the cheapest Vanka method would take
nearly four times as long as the Braess–Sarazin methods.

Table 3 shows the results for the Braess–Sarazin methods, broken down by grid
size, the choice of C, and the choice of S−1. In the setup phase, we observe that the
explicit computation of C−1 is very nearly a factor of 10 greater for the block-diagonal
version of Braess–Sarazin. This is not unexpected—after all, we form and explicitly
invert the 3×3 blocks in this computation, whereas we need only compute the inverse
of a diagonal for the diagonal method. Since computation of G = C−1B then requires
a matrix-vector product where the matrix has 4 entries per row, we expect the block-
diagonal method to be more expensive than a simple diagonal scaling. In fact, it is
almost exactly 4 times more costly. As expected, the time for computing S = −BTG
is essentially the same for both choices of C at each grid size. Finally, we note that
as we double the number of elements in each direction, we see an increase in the total
setup time by a factor of 4—exactly what we expect.

The solve phase shows timings for 50 iterations. The first notable thing is that
using one sweep of SGS costs a very small amount more than using Jacobi. This
is reasonable since we must sweep through the grid points twice—forward and back-
ward. Also, the diagonal method is marginally faster than the block-diagonal method.
Again, this is not surprising since applying C−1 is marginally more expensive in the
block-diagonal method. As we double the number of elements in each direction, we
again see that the timings scale by a factor of (just slightly smaller than) 4. We do
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Table 3

Aggregated timings in seconds for 50 iterations of the two Braess–Sarazin relaxation schemes,
each with two solvers for (3.10). There is only one call to the setup phase, followed by 50 calls to the
solve phase. “C−1” shows the time spent computing C−1 for the given method, “C−1B” is the time
spent explicitly computing G = C−1B, “S” is the time spent explicitly computing S = BTC−1B =
BTG, and the following “Total” is the total time to set up the method. “Op*x” indicates the time
spent computing 50 matrix-vector products, “Relax” indicates the amount of time spent applying
the method (3.10)–(3.11), and the following “Prec*x” indicates the total time spent applying the
preconditioner. This includes computing one new residual each iteration.

Grid 128× 128 256× 256 512× 512

C Diagonal 3× 3 Diagonal 3× 3 Diagonal 3× 3

S−1 Jac SGS Jac SGS Jac SGS Jac SGS Jac SGS Jac SGS

Setup

C−1 0.012 0.016 0.138 0.122 0.046 0.054 0.476 0.542 0.213 0.203 2.011 1.95

C−1B 0.020 0.014 0.061 0.057 0.049 0.047 0.228 0.223 0.186 0.190 0.834 0.834

S 0.169 0.176 0.178 0.171 0.671 0.677 0.698 0.673 2.692 2.667 2.639 2.658

Total 0.206 0.212 0.404 0.376 0.776 0.788 1.492 1.529 3.114 3.085 5.849 5.77

Solve

Op*x 0.631 0.712 0.720 0.635 2.493 2.772 2.522 2.810 10.92 10.54 10.76 9.66

Relax 0.230 0.304 0.288 0.304 0.874 1.153 1.029 1.253 3.657 4.382 4.001 4.728

Prec*x 1.088 1.25 1.229 1.173 4.085 4.602 4.244 4.739 17.18 17.59 17.33 17.18

see a substantial gap between the time it takes to apply the Braess–Sarazin iteration,
(3.10)–(3.11), and the total time spent applying the preconditioner. Part of this gap
is explainable as time spent computing residuals: one per iteration to allow the pre-
conditioner code to accept an initial guess when being used as a relaxation scheme.
The bulk of this time is the matrix-vector product, so we include the time to do 50
matrix-vector products as well, computed as the time GMRES spends computing the
next update direction. The rest of the time is spent in software overhead, mostly
converting data objects to the appropriate type and other interface functions that are
necessary for the software.

4.3.2. Full simulation timing studies. Finally, we compare the two relaxation
procedures for a full simulation. Tables 4 and 5 show timing results for nonlinear solves
using Vanka. Tables 6 and 7 show timing results for nonlinear solves using Braess–
Sarazin. In the Vanka tables, “Type” indicates which of Full, Economy, or Diagonal
Vanka was used. For Braess–Sarazin, this indicates whether the 3× 3 block-diagonal
method or the diagonal method was used. Also in the Braess–Sarazin tables, “S−1”
indicates whether one sweep of SGS or Jacobi was used to solve (3.10). “Setup” is the
time in seconds to set up the multigrid hierarchy. This time includes computing P
and Ac for each grid, as well as setting up everything for the relaxation scheme. For
Vanka, this means computing the Vanka blocks and then forming and factoring the
Vanka matrices. For Braess–Sarazin, this means computing C−1 and S. “GMRES”
indicates the total number of seconds spent iterating in GMRES. The number in
parentheses in this column indicates the number of Newton steps required to converge.
“Prec” indicates the number of seconds of GMRES that are spent in calls to the
preconditioner. The number in parentheses here is the total number of calls to the
preconditioner, which is equal to the total number of GMRES iterations across all
Newton steps. Finally, “Total” is the total time in seconds spent in Trilinos, including
discretization time. We also refer to this as “total time to solution.”

Looking at the Vanka setup results in Tables 4 and 5, Full Vanka lags significantly
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Table 4

Timing data for the three Vanka methods applied in the full Newton solve for the Hartmann
problem with Ha = 1 and Ha = 20. Three different finest-grid sizes are shown.

Ha = 1 Ha = 20

Type Setup GMRES Prec Total Setup GMRES Prec Total

1282
Full 49.1 213 (5) 213 (32) 289 50.8 218 (5) 217 (31) 297

Econ 17.1 322 (5) 321 (51) 366 17.0 304 (5) 303 (48) 348

Diag 11.3 319 (5) 318 (50) 357 11.4 297 (5) 296 (47) 336

2562
Full 198 918 (5) 916 (33) 1220 198 895 (5) 892 (32) 1199

Econ 68.7 1374 (5) 1370 (52) 1548 68.6 1313 (5) 1309 (50) 1486

Diag 44.1 1338 (5) 1333 (52) 1486 44.3 1354 (5) 1350 (51) 1504

5122
Full 735 3306 (5) 3297 (33) 4430 737 3126 (5) 3117 (31) 4259

Econ 258 5186 (5) 5168 (55) 5837 263 4923 (5) 4907 (51) 5585

Diag 165 5022 (5) 5004 (55) 5575 163 4761 (5) 4745 (52) 5308

Table 5

Timing data for the three Vanka methods applied in the full Newton solve for the Hartmann
problem with Ha = 80. Three different finest-grid sizes are shown.

Type Setup GMRES Prec Total

1282
Full 50.6 257 (5) 256 (37) 335

Econ 17.1 346 (5) 345 (55) 390

Diag 11.1 614 (5) 611 (101) 652

2562
Full 198 975 (5) 972 (35) 1278

Econ 68.4 1547 (5) 1542 (59) 1720

Diag 43.2 2470 (5) 2458 (103) 2615

5122
Full 596 2629 (4) 2622 (26) 3554

Econ 207 4949 (4) 4930 (52) 5483

Diag 172 10220 (5) 10160 (107) 10790

in setup time. Economy Vanka takes nearly a third of the time as Full Vanka, and
Diagonal takes about a fourth of the time. This is the case for every grid size.
Moreover, as the grid size doubles in each direction, the time to set up the multigrid
hierarchies increases by a factor of 4. Thus we have a scalable setup phase.

Inspection of the solve phase timings in Tables 4 and 5 shows that the precondi-
tioning time dominates the total GMRES time (including orthogonalization, etc.) in
the linear solves. Furthermore, Full Vanka is faster on all grid sizes in the solve phase
because it requires significantly fewer GMRES iterations per step. The additional
per-iteration cost of Full Vanka implied by Table 2 is more than offset by the reduced
number of iterations required to reach the convergence tolerance of the linear solves,
making it the faster algorithm. Comparing Economy Vanka and Diagonal Vanka, we
see that these methods require nearly the same number of total GMRES iterations in
the physical regimes in which Diagonal Vanka converges well (shown here as Ha = 1
and Ha = 20). Except in the 256× 256 case at Ha = 20, Diagonal Vanka is faster in
the solve phase. For the total time to solution, the reduced number of iterations for
Full Vanka is able to offset the increased setup cost, and it is the fastest of the Vanka
methods at all grid sizes.

For Braess-Sarazin, in Tables 6 and 7, we see that the setup for the two methods
is nearly the same, with Diagonal Braess–Sarazin being only a few seconds faster,
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Table 6

Timing data for the two Braess–Sarazin methods applied in the full Newton solve for the Hart-
mann problem with Ha = 1. Timings for three finest-grid sizes are shown. For each Braess–Sarazin
method, we show results for two approximate solvers for (3.10).

Ha = 1 Ha = 20

Type S−1 Setup GMRES Prec Total Setup GMRES Prec Total

1282

3× 3 SGS 10.2 7.62 (5) 6.04 (54) 46.5 9.63 6.38 (5) 5.06 (53) 43.5

3× 3 Jacobi 10.4 8.21 (5) 6.43 (66) 46.8 10.1 8.39 (5) 6.59 (64) 46.1

Diag SGS 8.45 6.62 (5) 5.2 (56) 43.2 8.76 8.46 (5) 6.62 (65) 45.6

Diag Jacobi 8.58 7.74 (5) 5.99 (67) 43.6 8.84 9.24 (5) 7.15 (71) 46.5

2562

3× 3 SGS 39.1 28.5 (5) 22.3 (54) 179 39.5 27.5 (5) 21.6 (52) 179

3× 3 Jacobi 41.1 30.9 (5) 24.1 (66) 183 39.7 30.9 (5) 23.9 (64) 181

Diag SGS 36.9 28.4 (5) 22.3 (55) 182 34.2 30.3 (5) 23.4 (64) 177

Diag Jacobi 35.0 33.2 (5) 25.5 (67) 180 35.0 34.2 (5) 26.1 (72) 180

5122

3× 3 SGS 148 91.4 (5) 71.6 (54) 665 147 87.9 (5) 68.7 (52) 663

3× 3 Jacobi 144 103 (5) 79.2 (66) 653 148 97.5 (5) 75.0 (63) 662

Diag SGS 135 98.5 (5) 77.1 (55) 665 127 98.2 (5) 75.5 (62) 644

Diag Jacobi 129 115 (5) 87.5 (67) 674 128 112 (5) 84.8 (71) 666

10242

3× 3 SGS 476 260 (4) 205 (43) 2064 603 314 (5) 248 (52) 2497

3× 3 Jacobi 465 302 (4) 231 (53) 2179 608 374 (5) 291 (63) 2589

Diag SGS 413 269 (4) 210 (45) 2002 516 364 (5) 283 (61) 2465

Diag Jacobi 416 322 (4) 247 (55) 2068 520 417 (5) 319 (71) 2520

Table 7

Timing data for the two Braess–Sarazin methods applied in the full Newton solve for the Hart-
mann problem with Ha = 80. Timings for three finest-grid sizes are shown. For each Braess–Sarazin
method, we show results for two approximate solvers for (3.10).

Type S−1 Setup GMRES Prec Total

1282
3× 3 SGS 10.5 10.0 (5) 7.79 (80) 48.2

3× 3 Jacobi 9.92 8.74 (5) 6.71 (79) 46.0

2562
3× 3 SGS 39.1 30.6 (5) 23.9 (59) 180

3× 3 Jacobi 39.9 33.4 (5) 25.7 (70) 183

5122
3× 3 SGS 116 70.2 (4) 54.7 (43) 531

3× 3 Jacobi 125 95.7 (4) 73.6 (56) 576

10242
3× 3 SGS 478 268 (4) 212 (41) 2095

3× 3 Jacobi 481 335 (4) 257 (56) 2154

even on the finest grid case. Furthermore, the hierarchy setup time scales by a factor
of 4 as we double the number of elements in each direction.

As with the Vanka methods above, preconditioning dominates the GMRES time.
Within a Braess–Sarazin method, using SGS to solve (3.10) results in fewer iterations
of GMRES, which translates to less computational time.

Remark 4. The memory footprint of Full Vanka was much higher than the other
methods, requiring more than twice as much memory as any other approach. Fur-
thermore, Economy Vanka was marginally more expensive than Diagonal Vanka, as
expected. The Diagonal Braess–Sarazin method had the smallest memory footprint,
requiring only slightly less than the Block-Diagonal Braess–Sarazin method.

Comparing the Vanka methods to the Braess–Sarazin methods, every variation
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of Braess–Sarazin is an order of magnitude faster than every variation of Vanka for
a given problem on a given grid size. Furthermore, in cases in which the diago-
nal versions of Vanka and Braess–Sarazin methods fail to provide good convergence,
the Economy or Block-Diagonal methods, respectively, provide an alternative that is
comparable in both per-iteration computational time and memory usage.

5. Conclusions and future work. We present extensions of two relaxation
techniques from the incompressible fluid dynamics literature to a single-fluid resis-
tive MHD problem in the context of a monolithic geometric multigrid method. We
show that both the Vanka and the Braess–Sarazin approaches are effective relaxation
schemes for this system with properly chosen relaxation parameters. Furthermore,
we present three varieties of Vanka relaxation and two varieties of Braess–Sarazin
relaxation. We find that the diagonal approximation versions of each of them lack
robustness in physical regimes with strong coupling between the fluid velocity and
magnetics (i.e., those with high Hartmann number). In the case of Vanka, the Full
and Economy methods are robust across a range of Hartmann numbers and grid sizes,
as is the block-diagonal approximation version of Braess–Sarazin.

However, in the serial timings, we see that nearly every aspect of the Braess–
Sarazin methods is computationally faster than the Vanka methods. A large overhead
in the Vanka computations is seen due to the need to continually update the residuals
at each step of the Gauss–Seidel iteration. As the block size is large (76 × 76), this
is not a trivial computation. Within the Vanka method, the reduced number of
iterations for Full Vanka is enough to offset the greater per-iteration cost, making it
the fastest of the Vanka methods in total time to solution. Within Braess–Sarazin, we
generally observe that the total time to solution for the methods is nearly the same
for Ha = 1, but as the Hartmann number increases, Diagonal Braess–Sarazin becomes
less effective and the block-diagonal version becomes the more efficient choice.

A main topic of future work will be considering the finite-element discretization.
First, we will examine the inf-sup stability of vector-potential formulations for two-
dimensional stationary, incompressible MHD, following [23, 40]. In addition, we will
investigate formulations that keep the full B-field (instead of using a vector potential)
and involve another Lagrange multiplier for the solenoidal constraint [25, 40]. Extend-
ing the multigrid methods presented here to these settings should be straightforward,
using the second Lagrange multiplier to define appropriate Vanka and Braess–Sarazin
relaxation schemes. Additionally, comparing the monolithic multigrid methods dis-
cussed here with block-factorization preconditioners for three-dimensional problems,
particularly in parallel settings, is a second main focus of current and future research.
Finally, as we noted above, the application of these methods to problems on nonuni-
form, unstructured, and anisotropic meshes is a topic requiring future research.
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